Proofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli.

نویسندگان

  • Rabaab Zahra
  • John K Blackwood
  • Jill Sales
  • David R F Leach
چکیده

Expanded CAG x CTG trinucleotide repeat tracts are associated with several human inherited diseases, including Huntington's disease, myotonic dystrophy, and spinocerebellar ataxias. Here we describe a new model system to investigate repeat instability in the Escherichia coli chromosome. Using this system, we reveal patterns of deletion instability consistent with secondary structure formation in vivo and address the molecular basis of orientation-dependent instability. We demonstrate that the orientation dependence of CAG x CTG trinucleotide repeat deletion is determined by the proofreading subunit of DNA polymerase III (DnaQ) in the presence of the hairpin nuclease SbcCD (Rad50/Mre11). Our results suggest that, although initiation of slippage can occur independently of CAG x CTG orientation, the folding of the intermediate affects its processing and this results in orientation dependence. We propose that proofreading is inefficient on the CTG-containing strand because of its ability to misfold and that SbcCD contributes to processing in a manner that is dependent on proofreading and repeat tract orientation. Furthermore, we demonstrate that transcription and recombination do not influence instability in this system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cag.,ctg Trinucleotide Repeat Instability in the E. Coli Chromosome

Expanded CAG-CTG trinucleotide repeat tracts are associated with a number of hereditary neurodegenerative and neuromuscular diseases such as Huntington's disease, myotonic dystrophy and spinocerebellar ataxias. These diseases are characterized by the phenomenon of genetic anticipation, which is defined by a decrease in the age of onset and an increase in severity of the disease with successive ...

متن کامل

Replication dependent instability at (CTG)•(CAG) repeat hairpins in human cells

Instability of (CTG) x (CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than a dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped-strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is lacking. We have used targeted recombinati...

متن کامل

Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae.

To examine the chromosomal stability of repetitions of the trinucleotide CAG, we have cloned CAG repeat tracts onto the 3' end of the Saccharomyces cerevisiae ADE2 gene and placed the appended gene into the ARO2 locus of chromosome VII. Examination of chromosomal DNA from sibling colonies arising from clonal expansion of strains harboring repeat tracts showed that repeat tracts often change in ...

متن کامل

The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo.

Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage lambda, the center of which determines i...

متن کامل

Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.

A quantitative and selective genetic assay was developed to monitor expansions of trinucleotide repeats (TNRs) in yeast. A promoter containing 25 repeats allows expression of a URA3 reporter gene and yields sensitivity to the drug 5-fluoroorotic acid. Expansion of the TNR to 30 or more repeats turns off URA3 and provides drug resistance. When integrated at either of two chromosomal loci, expans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 176 1  شماره 

صفحات  -

تاریخ انتشار 2007